Mathematical Modeling of Subthreshold Resonant Properties in Pyloric Dilator Neurons

نویسندگان

  • Babak Vazifehkhah Ghaffari
  • Mojgan Kouhnavard
  • Takeshi Aihara
  • Tatsuo Kitajima
چکیده

Various types of neurons exhibit subthreshold resonance oscillation (preferred frequency response) to fluctuating sinusoidal input currents. This phenomenon is well known to influence the synaptic plasticity and frequency of neural network oscillation. This study evaluates the resonant properties of pacemaker pyloric dilator (PD) neurons in the central pattern generator network through mathematical modeling. From the pharmacological point of view, calcium currents cannot be blocked in PD neurons without removing the calcium-dependent potassium current. Thus, the effects of calcium (I(Ca)) and calcium-dependent potassium (I(KCa)) currents on resonant properties remain unclear. By taking advantage of Hodgkin-Huxley-type model of neuron and its equivalent RLC circuit, we examine the effects of changing resting membrane potential and those ionic currents on the resonance. Results show that changing the resting membrane potential influences the amplitude and frequency of resonance so that the strength of resonance (Q-value) increases by both depolarization and hyperpolarization of the resting membrane potential. Moreover, hyperpolarization-activated inward current (I(h)) and I(Ca) (in association with I(KCa)) are dominant factors on resonant properties at hyperpolarized and depolarized potentials, respectively. Through mathematical analysis, results indicate that I h and I(KCa) affect the resonant properties of PD neurons. However, I(Ca) only has an amplifying effect on the resonance amplitude of these neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining synaptic and cellular resonance in a feed-forward neuronal network

We derive a mathematical theory to explain the subthreshold resonance response of a neuron to synaptic input. The theory shows how a neuron combines information from its intrinsic resonant properties with those of the synapse to determine the neuron's generalized resonance response. Our results show that the maximal response of a postsynaptic neuron can lie between the preferred intrinsic frequ...

متن کامل

Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency.

Network oscillations typically span a limited range of frequency. In pacemaker-driven networks, including many central pattern generators (CPGs), this frequency range is determined by the properties of bursting pacemaker neurons and their synaptic connections; thus, factors that affect the burst frequency of pacemaker neurons should play a role in determining the network frequency. We examine t...

متن کامل

Noise-induced coherence and network oscillations in a reduced bursting model.

The dynamics of the Hindmarsh-Rose (HR) model of bursting thalamic neurons is reduced to a system of two linear differential equations that retains the subthreshold resonance properties of the HR model. Introducing a reset mechanism after a threshold crossing, we turn this system into a resonant integrate-and-fire (RIF) model. Using Monte-Carlo simulations and mathematical analysis, we examine ...

متن کامل

KChIP1 and frequenin modify shal-evoked potassium currents in pyloric neurons in the lobster stomatogastric ganglion.

The transient potassium current (I(A)) plays an important role in shaping the firing properties of pyloric neurons in the stomatogastric ganglion (STG) of the spiny lobster, Panulirus interruptus. The shal gene encodes I(A) in pyloric neurons. However, when we over-expressed the lobster Shal protein by shal RNA injection into the pyloric dilator (PD) neuron, the increased I(A) had somewhat diff...

متن کامل

Dopamine modulation of calcium currents in pyloric neurons of the lobster stomatogastric ganglion.

We examined the dopamine (DA) modulation of calcium currents (ICa) that could contribute to the plasticity of the pyloric network in the lobster stomatogastric ganglion. Pyloric somata were voltage-clamped under conditions designed to block voltage-gated Na+, K+, and H currents. Depolarizing steps from -60 mV generated voltage-dependent, inward currents that appeared to originate in electrotoni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015